Steel Sheet Piling has a connection "interlock" at both ends of the section. These interlocks connect with one another to form a continuous wall of Sheet Piling. Soil conditions may allow for the sections to be vibrated into the ground instead of being hammer driven. Typically these are designed to create a rigid barrier for earth and water, while resisting the lateral pressures of those bending forces. The shape or geometry of a section lends to the structural strength. In addition, the soil in which the section is driven has numerous mechanical properties that can affect the performance. The wall of sheeting provides excellent resistance to bending forces and is used to provide structural strength to a foundation.

Steel Sheet Piling is classified in two construction applications, permanent and temporary. A permanent application is one that "stays-in-place" where the sheet piling wall is driven and remains in the ground. A temporary application provides access and safety for construction in a confined area, but once the work is completed, the Sheet Piling is removed.

R.W. Conklin Steel carries a vast inventory of Sheet Pile. Hot-Rolled Sheet Piling, such as, PZ, PZC, and PS Shapes, as well as Cold-Formed Sheet Piling, such as, Lightweight, LZ, SZ, and MSZ (Mega-Z). All shapes can be used for combined walls and are available in all grade qualities.

Similar to H-Pile, it is an exciting time for Sheet Pile as well. Additional sizes for both Hot-Rolled, PZC Sheet Piling, and Cold-Formed Mega-Z (MSZ) Sheet Piling are being manufactured. Previously, PZC Sheet Piling was only available in PZC-13, 14, 18, 19, 25, 26, and 28. Now, PZC 37, 39, and 41 are available. These new sizes are comparable to PZ-40, and offer a higher Section Modulus and Moment of Inertia than the PZC-28 or the PZ-40. PZC's are manufactured to be wider, lighter, and stronger than traditional PZ piling, and because the new sizes have a higher Section Modulus and Moment of Inertia, they offer more possibilities for a variety of projects.

Mega-Z Sheet Piling is also being manufactured to provide larger sizes than have been previously available in Cold-Formed sections, which also offer a higher Section Modulus and Moment of Inertia.

In this section of the catalog, you'll also find information on Sheet Piling accessories such as:

**Sheet Piling Connectors**

Connectors are made to highly stringent standards that form precise, seamless connections between steel Sheet Pile and other support systems, such as H-Piles, Wide Flange, and Pipe Piling.

**Sheet Piling Protectors**

Sheet Piling Protectors help insure pile penetration and at the same time provide significant protection. These protectors may be installed with tack-weld or drive-fit.
Higher interlock strengths are available but obtainable swing may be reduced in interlock strengths about 24 Kips/in. (4,200 Kn/m).

The minimum ultimate interlock strengths assume proper interlocking of sheets. To verify the strength of PS Sheet Piling, both yielding of the web and failure of the interlock should be considered.

Swing reduces 1.5 degrees for each 10 feet (3 meters) in length over 70 feet (21 meters).

Note: Do not Interlock PS sections made by two different manufacturers. PS and Z-sheet piling should not be interlocked together. Only PS 27.5 and PS 31 can be interlocked with each other.

Available Steel Grades

<table>
<thead>
<tr>
<th>Section Size</th>
<th>Yield Strength (ksi)</th>
<th>Interlock Strength (k/in)</th>
<th>Maximum Swing°</th>
<th>Yield Strength (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C328</td>
<td>39</td>
<td>16</td>
<td>2800</td>
<td>39</td>
</tr>
<tr>
<td>A572-50</td>
<td>50</td>
<td>20</td>
<td>3500</td>
<td>50</td>
</tr>
<tr>
<td>A572-60</td>
<td>60</td>
<td>24</td>
<td>4200</td>
<td>60</td>
</tr>
<tr>
<td>A588</td>
<td>65</td>
<td>24</td>
<td>4200</td>
<td>65</td>
</tr>
<tr>
<td>A690</td>
<td>50</td>
<td>20</td>
<td>3500</td>
<td>50</td>
</tr>
</tbody>
</table>

* Both sides of the sheet; excludes socket and ball of interlock.

** The minimum ultimate interlock strengths assume proper interlocking of sheets. To verify the strength of PS Sheet Piling, both yielding of the web and failure of the interlock should be considered.

Higher interlock strengths are available but obtainable swing may be reduced in interlock strengths about 24 Kips/in. (4,200 Kn/m).
PS Flat Web Connectors

Specifications

**30° WYE PILE**

**SWC 30 A**

- **Weight**: ~ 37.89 lb/ft
- **Works With**: PS: 27.5, 31
- **Steel Grade**: ASTM Grade 50 (or better)

**SWC 30 B**

- **Weight**: ~ 28.83 lb/ft
- **Works With**: PS: 27.5, 31
- **Steel Grade**: ASTM Grade 50 (or better)

All calculations and information should be double-checked by a qualified engineer.
**PS Flat Web Connectors**

**Specifications**

**SWC 60 A**

- **60° WYE PILE**
- **Weight**: ~ 41.11 lb/ft
- **Works With**: PS: 27.5, 31
- **Steel Grade**: ASTM Grade 50 (or better)

**SWC 60 B**

- **60° WYE PILE**
- **Weight**: ~ 33.46 lb/ft
- **Works With**: PS: 27.5, 31
- **Steel Grade**: ASTM Grade 50 (or better)
**90° WYE PILE**

**WEIGHT**
~ 35.82 lb/ft

**WORKS WITH**
PS: 27.5, 31

**STEEL GRADE**
ASTM Grade 50 (or better)

---

**Configuration One**

**SWC 90 A**

---

**Configuration Two**

**SWC 90 A**

**SWC 90 B**

---

All calculations and information should be double-checked by a qualified engineer.
**120° WYE PILE**

**WEIGHT**  
~ 38.29 lb/ft

**WORKS WITH**  
PS: 27.5, 31

**STEEL GRADE**  
ASTM Grade 50 (or better)

---

**Specifications**

- **Orientation One**
  - ~4.64”  
  - ~117.8 mm
  - ~5.08”  
  - ~129.7 mm
  - ~.191”  
  - ~4.83 mm

- **Orientation Two**
  - ~4.64”  
  - ~117.8 mm
  - ~5.08”  
  - ~129.7 mm
  - ~.191”  
  - ~4.83 mm

All calculations and information should be double-checked by a qualified engineer.
PS Flat Web Connectors

Specifications

<table>
<thead>
<tr>
<th>SWC</th>
<th>WELD-ON</th>
<th>WEIGHT</th>
<th>WORKS WITH</th>
<th>STEEL GRADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>~12.34 lb/ft</td>
<td>PS: 27.5, 31</td>
<td>ASTM Grade 50 (or better)</td>
</tr>
</tbody>
</table>

~3.01" ~76.4 mm
~2.17" ~55 mm
~1.57" ~40 mm
~10° ~10°

All calculations and information should be double-checked by a qualified engineer.
PS SHEET PILE PROTECTOR

This sheet pile protector is available as a straight bar for fitting to any PS sheet pile section. It comes in 30-inch lengths for job site cutting and easy welding for full end protection.
Sheet piling is a unique product because it has a connection (or an “interlock”) at both ends of the section. The interlocks connect together forming a continuous wall of sheeting. Sheet piling is classified in 2 applications: permanent and temporary.

In a permanent application, the sheet piling wall is driven into and remains in the ground. A temporary application provides access and safety for construction in a confined area. Once the work is completed, the sheet piling is removed.

### Z-PROFILES (PZC & PZ)

Z-profiles, with their optimum distribution of material, are the most efficient sheet piling sections available for bending strength. With the interlocks located on the outer fibers of the wall — rather than at the center line, as is the case with Arch or U-Profile sheet piling sections, the wall designer is assured of the published section modulus. The Z-Profile is optimal for both weight and strength.

### THE INTERLOCK

The Ball-and-Socket Interlock was introduced in the USA in the late 1930’s and continues to be the preferred interlock.

#### The Benefits:
- Highest interlock strength relative to other Z-Profiles
- Easier for setting, driving, and extraction
- Flexibility when setting — allows adjustment to wall length by swinging (rotating sheets)
- Most rugged, durable and flexible interlock available
- Ideal for reuse in multiple projects
- Higher "buy back/resale" value

---

### Specifications

<table>
<thead>
<tr>
<th>SECTION SIZE</th>
<th>NOMINAL WIDTH</th>
<th>WALL DEPTH</th>
<th>WEB THICKNESS</th>
<th>FLANGE THICKNESS</th>
<th>AREA</th>
<th>WEIGHT</th>
<th>MOMENT OF INERTIA</th>
<th>SECTION MODULUS</th>
<th>TOTAL SURFACE AREA</th>
<th>NOMINAL COATING AREA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZ 22</td>
<td>22.00</td>
<td>9.25</td>
<td>0.375</td>
<td>0.375</td>
<td>12.20</td>
<td>12.00</td>
<td>156.0</td>
<td>4.96</td>
<td>4.46</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>559</td>
<td>235</td>
<td>9.5</td>
<td>9.5</td>
<td>78.7</td>
<td>61.8</td>
<td>6,495</td>
<td>1.51</td>
<td>1.36</td>
<td>990</td>
</tr>
<tr>
<td>PZ 27</td>
<td>18.00</td>
<td>12.10</td>
<td>0.375</td>
<td>0.375</td>
<td>12.20</td>
<td>12.00</td>
<td>281.0</td>
<td>4.96</td>
<td>4.46</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td>457</td>
<td>307</td>
<td>9.5</td>
<td>9.5</td>
<td>78.7</td>
<td>61.8</td>
<td>11,695</td>
<td>1.51</td>
<td>1.36</td>
<td>1,660</td>
</tr>
<tr>
<td>PZ 35</td>
<td>22.64</td>
<td>15.10</td>
<td>0.500</td>
<td>0.605</td>
<td>19.40</td>
<td>12.50</td>
<td>697.1</td>
<td>5.83</td>
<td>5.33</td>
<td>48.9</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>384</td>
<td>12.7</td>
<td>15.4</td>
<td>125.2</td>
<td>98.2</td>
<td>29,015</td>
<td>1.78</td>
<td>1.62</td>
<td>2,635</td>
</tr>
<tr>
<td>PZ 40</td>
<td>19.69</td>
<td>16.40</td>
<td>0.500</td>
<td>0.600</td>
<td>19.28</td>
<td>124.4</td>
<td>824.8</td>
<td>5.83</td>
<td>5.33</td>
<td>61.3</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>417</td>
<td>12.7</td>
<td>15.2</td>
<td>124.4</td>
<td>97.6</td>
<td>34,230</td>
<td>1.78</td>
<td>1.62</td>
<td>3,300</td>
</tr>
</tbody>
</table>

*All dimensions given are nominal. Actual flange and web thicknesses vary due to mill rolling practices; however, permitted variations for such dimensions are not addressed.

**Both sides of the sheet; excludes socket and ball of interlock.**
PZC sections are the “latest generation” of sheet piling profiles, and were developed to be lighter, wider, and stronger than the older traditional PZ sections. PZC profiles should always be the designer’s first choice in order to provide the end user the most efficient retention wall with the most efficient ratio of section modulus to weight.

All dimensions given are nominal. Actual flange and web thicknesses vary due to mill rolling practices; however, permitted variations for such dimensions are not addressed.

* Both sides of the sheet; excludes socket and ball of interlock.
PZC HIGH SECTION MODULUS SYSTEMS

PZC High Section Modulus systems are combinations of beams (PZC-B) or pipe (PZC-P) with PZC sheet piling designed to achieve higher section modulus requirements. The main load-carrying elements are the beams or pipe. The intermediate sheet piling, along with extruded connectors, serves to close the face of the wall.

PZC-B

PZC-P

COVER PLATED PZC 26
TO OBTAIN HIGHER SECTION MODULII

<table>
<thead>
<tr>
<th>NOMINAL WIDTH</th>
<th>PLATE SIZE</th>
<th>AREA</th>
<th>WEIGHT</th>
<th>TOTAL SURFACE AREA</th>
<th>NOMINAL COATING AREA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>in (mm)</td>
<td>in (mm)</td>
<td>in^2 (mm^2)</td>
<td>lb/ft (kg/m)</td>
<td>ft^2/lin ft (m^2/m)</td>
<td>in^2/lin ft (m^2/m)</td>
</tr>
<tr>
<td>PZC 37-CP</td>
<td>27.88</td>
<td>708</td>
<td>3.5x0.9375</td>
<td>89x24</td>
<td>28.28</td>
</tr>
<tr>
<td>PZC 39-CP</td>
<td>27.88</td>
<td>708</td>
<td>3.5x1.125</td>
<td>89x29</td>
<td>29.60</td>
</tr>
<tr>
<td>PZC 41-CP</td>
<td>27.88</td>
<td>708</td>
<td>3.5x1.25</td>
<td>89x32</td>
<td>30.47</td>
</tr>
</tbody>
</table>

All dimensions given are nominal. Actual flange and web thicknesses vary due to mill rolling practices; however, permitted variations for such dimensions are not addressed.

*Both sides of the sheet; excludes socket and ball of interlock.

NOTE:
- Best economy is obtained when plate length is limited to area of high moment.
- Cover plate length depends upon moment curve.
- Fillet weld should be sized to adequately resist design loads. Weld requirements should be specified by design engineer.

All calculations and information should be double-checked by a qualified engineer.
**COLT**
- Corner: ~25° to ~65°
- Weight: ~6.84 lb/ft
- Works With:
  - PZ: 22, 27, 35, 40
  - PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28
- Steel Grade: ASTM Grade 50 (or better)

**PZ 90**
- Corner: ~50° to ~130°
- Weight: ~7.36 lb/ft
- Works With:
  - PZ: 22, 27, 35, 40
  - PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28
- Steel Grade: ASTM Grade 50 (or better)

---

All calculations and information should be double-checked by a qualified engineer.
### PZ/PZC Connectors Specifications

#### CORNER
- **~115° TO ~155°**
- **Weight**: ~7.44 lb/ft
- **Works With**:
  - PZ: 22, 27, 35, 40
  - PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28
- **Steel Grade**: ASTM Grade 50 (or better)

#### COBRA
- **Corner**: ~90° ~90° ~20°
- **Weight**: ~7.44 lb/ft
- **Works With**:
  - PZ: 22, 27, 35, 40
  - PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28
- **Steel Grade**: ASTM Grade 50 (or better)

#### PZ TEE
- **Corner**: ~50° TO ~130°
- **Weight**: ~8.99 lb/ft
- **Works With**:
  - PZ: 22, 27, 35, 40
  - PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28
- **Steel Grade**: ASTM Grade 50 (or better)

All calculations and information should be double-checked by a qualified engineer.
**PZT-S**

- **Weight**: ~9.66 lb/ft
- **Works With**:
  - PZ: 22, 27, 35, 40
  - PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28
- **Steel Grade**: ASTM Grade 50 (or better)

---

**Joker**

- **Corner**: ~50° TO ~130°
- **Weight**: ~10.86 lb/ft
- **Works With**:
  - PZ: 22, 27, 35, 40
  - PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28
- **Steel Grade**: ASTM Grade 50 (or better)

---

All calculations and information should be double-checked by a qualified engineer.
**Bullhead**

**Corner**
~50° to ~130°

**Weight**
~9.72 lb/ft

**Works With**
- PZ: 22, 27, 35, 40
- PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28

**Steel Grade**
ASTM Grade 50 (or better)

---

All calculations and information should be double-checked by a qualified engineer.
**WOM/WOF**

**WEIGHT**
~ 6.50 lb/ft

**WORKS WITH**
PZ: 22, 27, 35, 40
PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28

**STEEL GRADE**
ASTM Grade 50 (or better)

---

**WOM-XL/WOF-XL**

**WEIGHT**
~ 6.50 lb/ft

**WORKS WITH**
PZ: 22, 27, 35, 40
PZC: 12, 13, 14, 17, 18, 19, 25, 26, 28

**STEEL GRADE**
ASTM Grade 50 (or better)

---

**Sheet Pile combined with Pipe Pile**

All calculations and information should be double-checked by a qualified engineer.
Sheet Pile combined with Wide Flange or H-Pile
The sheet protector shoe is available as a one-piece attachment for the popular Z sheet pile sections. It fits exactly—no cutting, no small pieces, no delays. Just tack weld to sheet piles and drive.

**PZC/PZ SHEET PILE PROTECTOR**

- **Cross Section:**
  - Dimensions: 4 1/2" ± 1/8"

- **End View:**
  - Dimensions: 11/16"

- **Bottom View:**
  - Dimensions: 3/4" R

All calculations and information should be double-checked by a qualified engineer.
### Bent Corners

**E Type**

<table>
<thead>
<tr>
<th>Nominal Width (mm)</th>
<th>Nominal Height (mm)</th>
<th>Central Section Gauge</th>
<th>Nominal Thickness (in)</th>
<th>Weight (SQ. FT.) (lb/sq ft)</th>
<th>Weight (LIN. FT.) (lb/lin ft)</th>
<th>Moment of Inertia (in² (ft. wall))</th>
<th>Coating Area (sq ft/lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3.12</td>
<td>10-10</td>
<td>.134</td>
<td>7.2</td>
<td>10.8</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>8-8</td>
<td>.164</td>
<td>8.8</td>
<td>13.2</td>
<td>2.62</td>
<td>4.2</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>7-7</td>
<td>.179</td>
<td>9.6</td>
<td>14.4</td>
<td>2.8</td>
<td>4.4</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>6-6</td>
<td>.194</td>
<td>10.5</td>
<td>15.8</td>
<td>3.0</td>
<td>4.9</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>5-5</td>
<td>.209</td>
<td>11.3</td>
<td>16.9</td>
<td>3.4</td>
<td>5.4</td>
</tr>
</tbody>
</table>

**F Type**

<table>
<thead>
<tr>
<th>Nominal Width (mm)</th>
<th>Nominal Height (mm)</th>
<th>Central Section Gauge</th>
<th>Nominal Thickness (in)</th>
<th>Weight (SQ. FT.) (lb/sq ft)</th>
<th>Weight (LIN. FT.) (lb/lin ft)</th>
<th>Moment of Inertia (in² (ft. wall))</th>
<th>Coating Area (sq ft/lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3.12</td>
<td>10-10</td>
<td>.134</td>
<td>7.2</td>
<td>10.8</td>
<td>2.2</td>
<td>3.5</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>8-8</td>
<td>.164</td>
<td>8.8</td>
<td>13.2</td>
<td>2.62</td>
<td>4.2</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>7-7</td>
<td>.179</td>
<td>9.6</td>
<td>14.4</td>
<td>2.8</td>
<td>4.4</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>6-6</td>
<td>.194</td>
<td>10.5</td>
<td>15.8</td>
<td>3.0</td>
<td>4.9</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>5-5</td>
<td>.209</td>
<td>11.3</td>
<td>16.9</td>
<td>3.4</td>
<td>5.4</td>
</tr>
</tbody>
</table>

### Zee Lightweight

**Bent Corners**

- **E Type**
- **F Type**
- **G Type**
- **H Type**
- **Outside/Inside Simple**
- **Outside/Inside Complicated**

<table>
<thead>
<tr>
<th>Nominal Width (in)</th>
<th>Nominal Height (in)</th>
<th>Section Type</th>
<th>Nominal Thickness (in)</th>
<th>Weight (SQ. FT.) (lb/sq ft)</th>
<th>Weight (LIN. FT.) (lb/lin ft)</th>
<th>Section Modulus (in³ (ft. wall))</th>
<th>Moment of Inertia (in⁴ (ft. wall))</th>
<th>Coating Area (sq ft/lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>4.5</td>
<td>LZ-8</td>
<td>.164</td>
<td>8.3</td>
<td>16.6</td>
<td>3.6</td>
<td>16.8</td>
<td>8.1</td>
</tr>
<tr>
<td>24</td>
<td>4.5</td>
<td>LZ-7</td>
<td>.179</td>
<td>9.1</td>
<td>18.2</td>
<td>3.9</td>
<td>18.4</td>
<td>8.9</td>
</tr>
<tr>
<td>24</td>
<td>4.5</td>
<td>LZ-5</td>
<td>.209</td>
<td>10.6</td>
<td>21.2</td>
<td>4.6</td>
<td>21.5</td>
<td>10.4</td>
</tr>
<tr>
<td>24</td>
<td>4.5</td>
<td>LZ-3</td>
<td>.239</td>
<td>12.3</td>
<td>24.6</td>
<td>5.2</td>
<td>24.5</td>
<td>11.8</td>
</tr>
<tr>
<td>24</td>
<td>4.5</td>
<td>LZ-250</td>
<td>.250</td>
<td>12.8</td>
<td>25.6</td>
<td>5.4</td>
<td>25.7</td>
<td>12.4</td>
</tr>
</tbody>
</table>

All calculations and information should be double-checked by a qualified engineer.
## Specifications

### Bent Corners

#### Intermediate Lightweight

<table>
<thead>
<tr>
<th>Nominal Width (in)</th>
<th>Nominal Height (in)</th>
<th>Section Type</th>
<th>Nominal Thickness (in)</th>
<th>Weight (Sq. Ft.)</th>
<th>Weight (Lb/lin ft)</th>
<th>Section Modulus (in^3/ft)</th>
<th>Moment of Inertia (in^4)</th>
<th>Coating Area (sq ft/lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>7.5</td>
<td>SZ-10</td>
<td>.164</td>
<td>9.4</td>
<td>16.6</td>
<td>7.3</td>
<td>50.3</td>
<td>27.4</td>
</tr>
<tr>
<td>22</td>
<td>7.5</td>
<td>SZ-11</td>
<td>.179</td>
<td>10.3</td>
<td>18.2</td>
<td>7.9</td>
<td>54.7</td>
<td>29.8</td>
</tr>
<tr>
<td>22</td>
<td>7.5</td>
<td>SZ-12</td>
<td>.209</td>
<td>12.0</td>
<td>21.2</td>
<td>9.2</td>
<td>63.9</td>
<td>34.8</td>
</tr>
<tr>
<td>22</td>
<td>7.5</td>
<td>SZ-14</td>
<td>.239</td>
<td>13.5</td>
<td>24.4</td>
<td>10.4</td>
<td>73.1</td>
<td>39.9</td>
</tr>
<tr>
<td>22</td>
<td>7.5</td>
<td>SZ-15</td>
<td>.250</td>
<td>14.0</td>
<td>25.5</td>
<td>10.9</td>
<td>76.4</td>
<td>41.7</td>
</tr>
</tbody>
</table>

#### Bent Corners

#### Intermediate Heavyweight

<table>
<thead>
<tr>
<th>Nominal Width (in)</th>
<th>Nominal Height (in)</th>
<th>Section Type</th>
<th>Nominal Thickness (in)</th>
<th>Weight (Sq. Ft.)</th>
<th>Weight (Lb/lin ft)</th>
<th>Section Modulus (in^3/ft)</th>
<th>Moment of Inertia (in^4)</th>
<th>Coating Area (sq ft/lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.75</td>
<td>9.4</td>
<td>SZ-14.5</td>
<td>.250</td>
<td>14.5</td>
<td>32.4</td>
<td>13.0</td>
<td>136.9</td>
<td>61.49</td>
</tr>
<tr>
<td>26.75</td>
<td>9.4</td>
<td>SZ-14.5RU</td>
<td>.270</td>
<td>15.7</td>
<td>35.1</td>
<td>14.0</td>
<td>147.8</td>
<td>66.40</td>
</tr>
<tr>
<td>26.75</td>
<td>9.4</td>
<td>SZ-18</td>
<td>.312</td>
<td>18.1</td>
<td>40.4</td>
<td>16.2</td>
<td>171.1</td>
<td>76.83</td>
</tr>
<tr>
<td>26.75</td>
<td>9.4</td>
<td>SZ-20</td>
<td>.340</td>
<td>19.8</td>
<td>44.1</td>
<td>17.5</td>
<td>185.6</td>
<td>83.37</td>
</tr>
<tr>
<td>26.75</td>
<td>9.4</td>
<td>SZ-21</td>
<td>.350</td>
<td>20.3</td>
<td>45.3</td>
<td>18.1</td>
<td>191.5</td>
<td>86.00</td>
</tr>
<tr>
<td>26.75</td>
<td>9.4</td>
<td>SZ-21</td>
<td>.375</td>
<td>21.8</td>
<td>48.6</td>
<td>19.3</td>
<td>204.6</td>
<td>91.92</td>
</tr>
</tbody>
</table>

### Bent Corners

**E Type**  
**F Type**  
**G Type**  
**H Type**  
**Outside/Inside Simple**  
**Outside/Inside Complicated**

All calculations and information should be double-checked by a qualified engineer.
# Cold Rolled Sheet Piling Specifications

## Mid-Heavy

<table>
<thead>
<tr>
<th>Nominal Width (in)</th>
<th>Nominal Height (in)</th>
<th>Section Type</th>
<th>Nominal Thickness (in)</th>
<th>Weight (sq. ft.) (lb)</th>
<th>Weight (lin. ft.) (lb/lin ft)</th>
<th>Section Modulus (in^3 ft. wall)</th>
<th>Moment of Inertia (in^4 ft. wall per pile)</th>
<th>Coating Area (sq ft/lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.5</td>
<td>10.75</td>
<td>SZ-250</td>
<td>.250</td>
<td>15.9</td>
<td>32.4</td>
<td>16.6</td>
<td>182.2</td>
<td>89.42</td>
</tr>
<tr>
<td>24.5</td>
<td>10.75</td>
<td>SZ-313</td>
<td>.312</td>
<td>19.9</td>
<td>40.4</td>
<td>20.6</td>
<td>227.3</td>
<td>111.53</td>
</tr>
<tr>
<td>24.5</td>
<td>10.75</td>
<td>SZ-340</td>
<td>.340</td>
<td>21.5</td>
<td>44.1</td>
<td>22.4</td>
<td>247.5</td>
<td>121.45</td>
</tr>
<tr>
<td>24.5</td>
<td>10.75</td>
<td>SZ-350</td>
<td>.350</td>
<td>22.1</td>
<td>45.3</td>
<td>22.9</td>
<td>254.0</td>
<td>124.62</td>
</tr>
<tr>
<td>24.5</td>
<td>10.75</td>
<td>SZ-375</td>
<td>.375</td>
<td>23.5</td>
<td>48.6</td>
<td>24.5</td>
<td>272.2</td>
<td>133.55</td>
</tr>
</tbody>
</table>

### Bent Corners
- **E Type**
- **F Type**
- **G Type**
- **H Type**
- **Outside/Inside Simple**
- **Outside/Inside Complicated**

## Heavyweight

<table>
<thead>
<tr>
<th>Nominal Width (in)</th>
<th>Nominal Height (in)</th>
<th>Section Type</th>
<th>Nominal Thickness (in)</th>
<th>Weight (sq. ft.) (lb)</th>
<th>Weight (lin. ft.) (lb/lin ft)</th>
<th>Section Modulus (in^3 ft. wall)</th>
<th>Moment of Inertia (in^4 ft. wall per pile)</th>
<th>Coating Area (sq ft/lin ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>12.25</td>
<td>SZ-222</td>
<td>.312</td>
<td>22.1</td>
<td>40.4</td>
<td>26.7</td>
<td>299.0</td>
<td>163.09</td>
</tr>
<tr>
<td>22</td>
<td>12.25</td>
<td>SZ-24</td>
<td>.340</td>
<td>24.1</td>
<td>44.1</td>
<td>29.0</td>
<td>325.5</td>
<td>177.52</td>
</tr>
<tr>
<td>22</td>
<td>12.25</td>
<td>SZ-25</td>
<td>.350</td>
<td>24.8</td>
<td>45.3</td>
<td>29.7</td>
<td>334.1</td>
<td>181.91</td>
</tr>
<tr>
<td>22</td>
<td>12.25</td>
<td>SZ-27</td>
<td>.375</td>
<td>26.6</td>
<td>48.6</td>
<td>32.0</td>
<td>358.0</td>
<td>195.18</td>
</tr>
</tbody>
</table>

### Bent Corners
- **E Type**
- **F Type**
- **G Type**
- **H Type**
- **Outside/Inside Simple**
- **Outside/Inside Complicated**
**BENT CORNERS**

**“E” TYPE**
- Capping Angle
- Waling Channel
- Tie Back Rods

**“F” TYPE**
- Custom Capping
- Waling Channel
- Tie Back Rods

**“G” TYPE**
- Capping Angle
- Waling Channel
- Tie Back Rods

**“H” TYPE**
- Custom Capping
- Waling Channel
- Tie Back Rods

All corners can be bent to any degree up to 90°. All piling sections can be bent to make outside corners or inside corners on either lock leg or center-of-web corners. Lock leg corners can be located anywhere between 3-inches and 8-inches from the centerline of the lock. Corners in the web area must be located at the center of the web.

---

**MEGA Z**

<table>
<thead>
<tr>
<th>NOMINAL WIDTH</th>
<th>NOMINAL HEIGHT</th>
<th>SECTION TYPE</th>
<th>NOMINAL THICKNESS</th>
<th>WEIGHT (SQ. FT.)</th>
<th>WEIGHT (LBS. FT.)</th>
<th>SECTION MODULUS</th>
<th>MOMENT OF INERTIA</th>
<th>COATING AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>in</td>
<td></td>
<td>in</td>
<td>lbs/sq ft</td>
<td>lbs/lin ft</td>
<td>in² (ft. wall)</td>
<td>in⁴ (ft. wall) per pile</td>
<td>sq ft/lin ft</td>
</tr>
<tr>
<td>29</td>
<td>17.2</td>
<td>MSZ-312</td>
<td>.313</td>
<td>20.58</td>
<td>49.72</td>
<td>34.45</td>
<td>714.12</td>
<td>295.65</td>
</tr>
<tr>
<td>29</td>
<td>17.2</td>
<td>MSZ-340</td>
<td>.340</td>
<td>22.40</td>
<td>54.10</td>
<td>37.46</td>
<td>777.92</td>
<td>322.06</td>
</tr>
<tr>
<td>29</td>
<td>17.2</td>
<td>MSZ-350</td>
<td>.350</td>
<td>23.05</td>
<td>55.69</td>
<td>38.48</td>
<td>799.75</td>
<td>331.10</td>
</tr>
<tr>
<td>29</td>
<td>17.2</td>
<td>MSZ-375</td>
<td>.375</td>
<td>24.70</td>
<td>59.67</td>
<td>41.14</td>
<td>856.69</td>
<td>354.67</td>
</tr>
<tr>
<td>29</td>
<td>17.2</td>
<td>MSZ-406</td>
<td>.406</td>
<td>26.74</td>
<td>64.60</td>
<td>44.53</td>
<td>929.53</td>
<td>384.83</td>
</tr>
</tbody>
</table>

---

**OUTSIDE SIMPLE**

- 90°

**INSIDE SIMPLE**

- 90°

**OUTSIDE COMPLICATED**

- 90°

**INSIDE COMPLICATED**

- 90°

---

All calculations and information should be double-checked by a qualified engineer.